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Synopsis 

A study of the plastic zones created around the tips of cracks in glassy polymers, under 
small scale yielding, can be confronted by using the two well-known pressuremodified yield 
criteria and the elastic solution of the problem. There is particular interest in the case of a 
cracked body reinforced by another more resisting body under planestrain conditions. The 
shapes of plastic zones developed around the tips of the crack subjected to opening mode 
loading conditions are examined as the crack approaches perpendicularly the bimaterial in- 
terface. For the study of plastic zones the exact solution derived from Muskhelishvili's complex 
potentials was used. Moreover, the plastic zones are confronted using either the exact solution 
or Sneddon's asymptotic expansion. 

INTRODUCTION 

The plastic zones created near a crack tip have a great important in 
fracture mechanics. This is due to the fact that the extent of the plastic 
zones can effect on the crack propagation velocities.' Moreover, the dimen- 
sions of the plastic zones and the intensity of deformation of these zones 
define basically the prerupture process and determine the nature of fracture 
of the body. 

The exact determination of the development of plastic zones near a crack- 
tip presents great difficulties. A lot of predictions hae been made so far2-5 
for the shape and position of the plastic zones. The majority of these pre- 
dictions are based on the determination of an initial elastic-plastic bound- 
ary using the Mises or Tresca criterion and the asymptotic elastic solution 
of the problem around the crack tip. But, the generation of the first plastic 
strains leads to a redistribution of stresses and further to a change in the 
development of the plastic zone. Thus, a new plastic zone must be derived 
which would differ essentially from the first one. From the generation of 
this second plastic zone a new redistribution of stresses will take place, and 
therefore a new change will be observed in the development of the plastic 
zone. So, we have a new plastic zone which also causes a new redistribution 
of stresses. Namely, the exact determination of plastic zones will follow 
after a series of successive approximations, and, when the finally obtained, 
the plastic zone will not differ essentially from the zone of the previous 
step. 
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In the case where the initial elastic-plastic boundary is very small, i.e., 
when the applied loads to both lips of the crack are sufficiently small, a 
redistribution of stresses will hardly change the shape of the initial elastic- 
plastic boundary. This statement is obvious and it is justified from finite 
element ana ly~is .~  The same is true if we have a strongly hardened material. 
(A limiting case is when the modulus of elasticity before yielding and after 
yielding is the same. In this case the elastic solution is perfectly correct.) 
When the initial obtained elastic-plastic boundary is small, i.e., the applied 
loads are small, a redistribution of stresses will not alter considerably the 
shape of plastic zones. In this case the exact position of the elastic-plastic 
boundary can be obtained by using a correction factor3 q, which is very 
close to unity. This occurs because the needed redistribution of stresses is 
not very important. But, when the initial elastic-plastic boundaries are 
large (slightly hardened materials), and/or the applied loads are large, the 
first elastic-plastic boundary given by the elastic solution of the initial 
problem differs considerably from the exact elastic-plastic boundary ob- 
tained by an iterative process. Obviously, in this case the first elastic-plastic 
boundary cannot serve to predict the real one and, consequently, the use 
of a correction factor to it is useless. Therefore, the elastic solution can be 
used for the prediction of plastic zones when the applied loads cause only 
a small scale yielding. 

The application of the elastic solution in most glassy polymers is not out 
of range because a slight redistribution of stresses appears in the plastic 
zone of these materials used as structural members. This can be explained 
because glassy polymers are in general strongly hardened materials, and 
the stress-strain curve may be approximated by two straight lines with 
small difference in slopes. Moreover, special treatment in glassy polymers, 
like rolling, preorientation, increase of molecular weight and of crosslink 
density, etc., can improve their mechanical behavior. On the other hand, 
the approximation of the elastic- plastic boundaries can be improved by 
using the correction factor3 q. 

It is interesting to note that if necking is presented in the glassy polymers, 
an important redistribution of stresses is necessary in order to obtain the 
plastic zone. In this case the solution given in this paper does not work. 

Plastic zones in cracked infinite plane made from glassy polymers have 
been studied recentle5 by using asymptotic solutions. As is pointed out in 
this paper, there is an important difference between predictions made by 
using exact and approximate solutions. Thus, in our study the exact for- 
mulas are applied for the determination of plastic zones. 

The plastic zones were studied for two pair of materials. The first pair 
concerns a crack in a glassy polymer reinforced by aluminium, and the 
second, a crack in a glassy polymer reinforced by another more resisting 
glassy polymer. That is, the examined problems correspond to the case of 
a cracked plate reinforced by a more resisting one. In particular, the two 
problems were confronted in the case where the crack approaches perpen- 
dicularly the bimaterial interface, in plane-strain conditions which pre- 
dominate at a small region around the crack tip when the crack is coming 
near the interface. The same problem has been studied in a recent papel.6 
by the same authors but by using plane stress conditions. Some comparisons 
between the results of the above and the present paper have been made. 
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The most interesting result of our study is the distortion of the plastic 
zones as the crack approaches the bimaterial interface. 

ELASTIC SOLUTION OF THE PROBLEM 

We consider a straight crack CD of length 2a in an isotropic elastic half- 
plane Dz bonded to another isotropic elastic half-plane D ,  (Fig. 1) (the 
adhesion between the half-planes being perfect.) The crack is located along 
the Ox-axis perpendicular to the interface. In each half-plane Di ( i = 1,2) 
are given its shear modulus p i  ( i = 1’2) and its Poisson’s ratio vi ( i = 1’2). 

This problem can be solved with the aid of Muskhelishvili’s complex 
which for each half-plane are given by 

IY 

Fig. 1. A crack in a half-plane bonded to a second half-plane consisting of a different 
isotropic elastic material. 
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where 
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(3) K1P2 - K 2 P l  

P1 + K1P2 
, B =  P2 - PI A =  

P2 + K2Pl 

( d - c )  = 2a  length of the crack 

K~ = (3-vi)/(1 + v i )  or K~ = 3-4vi ( i  = 1,2) (4) 

for generalized plane-stress or plane-strain conditions, respectively. Finally, 
the unknown density g(x )  is derived from the solution of the following 
system of singular integral equations: 

where relation (6) expresses the condition of single-valuedness of displace- 
ments along the crack CD, u n n ( x 0 )  and crnt(xO) are the normal and shear 
components of stresses, respectively, applied at the point xo of the crack, 
and 

The Cauchy type singular integral equation (5) can only be solved numer- 
ically.l0 The integrals are approximated by taking into consideration the 
Lobatto-Chebyshev rule." In what follows, by taking the appropriate col- 
location points we obtain from the eqs. (5) and (6) a linear system, with 
unknowns the values of the density g ( x )  at the integration points { x i  ] 
Therefore, ai(z) and Y i ( z )  (i=1,2) can be written as follows: 
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where A i ( z )  are the “weights” of the integration rule and 

i- 1 
x i  = cos- 

n- 1’ i = l ( l )n  

the “integration points.’’ 

(10) 

FRACTURE CRITERIA IN GLASSY POLYMERS 

The Mises criterion, which has been successfully used in metals, encoun- 
ters a lot of problems in glassy polymers. This occurs because the yield 
locus of glassy polymers basically depends on the hydrostatic stress com- 
ponent which is not taken into account in Mises criterion, and also because 
the glassy polymers present different yield locus in tension and compression. 
So, the yield locus in glassy polymers does not coincide with the yield locus 
resulting from the criterion of Mises. In order to overcome this difficulty, 
many efforts have been made ending in two main criteria which take into 
consideration Mises criterion. The first criterion, applied in glassy polymers 
by Bauwens15 and Sternstein and Ongchin,”j was initially proposed by 
Nadai17 and has the general form 

1 

where 

with al, u2, u3 the principal stresses and u;, u: the absolute values of the 
compressive and tensile yield strengths, respectively, of the material. In 
what follows this criterion will be referred as the first modified Mises 
criterion (MM1). 
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The second criterion was proposed by Schleicher (see Ref. 14) and has 
been developed by Meldahl.’* This criterion referred in what follows as the 
second modified-Mises criterion (MM2) is given by the formula 

It can be observed that both criteria are pressure-dependent and degenerate 
to the Mises criterion if the yield strengths in tension and compression are 
equated (c; = a i.e., R = 1). It must also be noted that the predictions of 
the second criterion for the elastic-plastic boundaries are much closer to 
the experimentals findings than the predictions of the first one. 

The distribution of stresses u,, and unl applied to both lips of the crack 
causes a high stress concentration in a small neighborhood of the crack 
tips, and as a consequence plastic strains will develop around the crack 
tips. But, the region in which plastic strains will develop is not known in 
advance. A first estimation of this region can be made if it is considered 
that the contour of the plastic region is geometrically similar to that ob- 
tained by relation (11) or by relation (12) and that the principal stresses 
are yielded using the Muskhelishvili relationsla with the aid of complex 
potentials a i ( z )  and Y i ( z )  (i=l,2). So, the stresses are only confined in 
their elastic components, and therefore the resulting elastic-plastic bound- 
aries are valid for the first step of deformation of the plate. Finally, the 
first criterion (MM1) takes the form 

r’ 

2R i = 1,2 (13) 
R-1 

( l + v )  [Re <Pi(z)] = - +4- 
R + l  R + la” 

and also the second (MM2) criterion gives 

where only plane-strain [u3 = w ( a l  +a2)] conditions were considered and 
Re <p,(z) denotes the real part of a , ( z ) .  

Equations (13) and (14) are solely functions of z [since @,(z)  and Y , ( z )  
are given by relations (8) and (9), respectively]. Let z* = x * + iy * = r* ece, 
the complex coordinates which satisfy anyone of the above equations. The 
determination of complex coordinates z* can be made either by using meth- 
ods for finding roots or considering the-polar angle 8 as known and using 
any Newton method in order to  find the only unknown r*. 

The set of complex coordinates z* determines the position of the incipient 
elastic plastic boundary between elastic and plastic regions at the crack tip 
C (the same work may takes place around the crack tip D). But, as our 
tests have proved when the applied stresses p are leSs than half of u& the 
elastic-plastic boundary is very small and we can consider that it coincides 
with the exact one. This occurs because the needed redistribution of stresses 
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after the formation of the first plastic strains is not very important since 
the glassy polymers are also strongly hardened materials. 

RESULTS AND DISCUSSION 

The proposed theory was applied to two problems in plane-strain con- 
ditions when a constant pressure p (cnn = p )  is applied to both lips of the 
crack. The first problem concerned an epoxy-aluminium bimaterial plate 
(the crack being in the epoxy). The second problem concerned an epoxy- 
epoxy bimaterial plate (the crack being in the less resisting epoxy). These 
part of materials were preferred because they correspond to problems USU- 

ally confronted in practice with composite materials. 
In the first problem the Poisson ratios of the two materials were v1 = 0.30 

and vz = 0.35, respectively, and the ratio of the corresponding shear moduli 
was pl/pz = 23.08. In the second problem the Poisson ratios of the two 
materials were v1 = 0.338 and vz = 0.43, respectively, and p1 /pz = = 1.938. 
These two epoxy materials correspond to the 100-0-8 and 100-40-8 phr (parts 
per hundred resin), respectively. An epoxy material with a greater per- 
centage in plasticizer becomes more viscoelastic, and therefore the elastic 
solution applied with MM1 and MM2 criterion is not valid. Figures 2(a)- 
2(f) give the plastic zones in the first problem and for the following values 
of c/u: 15.00, 1.00, 0.50, 0.25, 0.10, 0.04. Figures 3(a)-3(f) give the plastic 
zones in the second problem and for the same values of c/u as in Figures 
2. From the series of Figures 2 and 3 we can see the transformations taking 
place in plastic zones as the crack approaches perpendicularly the bima- 
terial interface. The curves of the figures were plotted for the following 
values of the constant R = 1.0, 1.2, and 1.5. In these figures the plastic 
enclaves of the upper halves correspond to the MM1 criterion, whereas the 
plastic enclaves of the lower halves correspond to the MM2 criterion. For 
R = 1 the elastic-plastic boundaries correspond to the Mises criterion. In 
relations (13) and (14) <ri is equal to 3p. So, q (see Ref. 3) is not essentially 
different from unity and therefore can be neglected. From the plastic zones 
given in Figures 2 and 3 the influence of the reinforcing material while 
the crack is approaching the bimaterial interface, is shown. 

As we can see from these figures, the volume of the plastic zone as well 
as its width along the axis of the crack for c/u > 0.10 monotonically de- 
creases as the crack approaches the bimaterial interface. For values 
c/u < 0.10 an increase of the width of the plastic zone is noted which 
becomes more important as c/u becomes smaller and R increases. It is 
interesting to note that the minimum of the width is not localized, but it 
was observed that for c/u= = 0.04 greater values for it are obtained (in 
the case of an epoxy-epoxy bimaterial plate and for R = l  this remark is 
not valid). On the contrary, the volume of the plastic zone given by the 
MM1 criterion decreases monotonically. In the case of MM2 criterion, the 
above remark is true only for R < 1.5. That means, that for R = 1.5 and 
c/u = 0.04 greater volume of the plastic zone is foreseen than for c/u =0.10 
when the MM2 criterion is used. Moreover, for c - 0 the shape of the plastic 
zone is gradually distorted, becoming more elongate in front of the crack. 
These phenomena are stronger when the reinforcing material is stiffer (in ’ 
the case of epoxy-aluminium). 
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t y*'= 

Fig. 2. Elastic-plastic boundaries around the tip C of the crack CD in an epoxy half-plane 
bonded to an aluminium one. Upper curves correspond to the MM1 criterion while lower ones 
to the MM2 criterion. 
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Fig. 2. (continued from previous page) 
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t y*/a 
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Fig. 2. (continued from pwvwus page) 
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Fig. 3. Elastic-plastic boundaries around the tip C of the crack CD in an epoxy half-plane 
bonded to a more resisting epoxy one. Upper curves correspond to the MM1 criterion while 
lower ones to the MM2 criterion. 
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Fig. 3. (continued from prevwus page] 
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Fig. 3. (continued fmm previous page) 
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On the contrary, if the crack is in the stiffer material, then, as the crack 
approaches, the bimaterial interface the plastic zone increases monotoni- 
cally. Obviously, if the crack is near the boundary, the plastic zone will be 
expended into the other material. 

Another interesting result is that the width of the half of the plastic zone 
presents two extrema, one of which coincides with the x-axis. The other 
extremum forms an obtuse angle with the crack for the greater values of 
c/u which decreases and becomes acute when c/u - 0. 

From Figures 2 and 3 it can also be observed that both criteria (MM1 
and MM2) present different plastic zones than those presented by the Mises 
criterion and that these differences increase as R increases. 

In the case where c/u = 15.0 (the crack being far away to the interface 
boundary) the plastic zones derived around the crack tip C almost coincides 
to those of a crack in an infinite epoxy plate. The small differences existing 
in Figures 2(a) and 3(a) are principally due to the different Poisson ratios 
of the two epoxy plates. The results derived from Figures 2(a) and 3(a) 
contradict with the conclusions of Ref. 4 obtained by using Sneddon’s asymp- 
totic formula, that “the plastic zones obtained by both criteria are always 
larger than those obtained by the Mises criterion.” On the contrary, it 
remains true (see Ref. 4) that the plastic zones obtained by the second 
criterion are always larger than those of the first one. From the Figures 2 
and 3 it is also shown that this difference increases as R increases. 

Another difference which take place between the exact results and the 
approximate ones is presented in Figure 4. In it a distortion of the shape 

t y*’a 

Fig. 4. Mises’ elastic-plastic boundaries in an infinite plate for various values of u $ l p .  
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of plastic zones predicted by the Mises criterion (R = 1) in plane-strain 
conditions is observed as the ratio a i l p  decreases. On the other hand, the 
curves are almost geometrically similar for values of u$lp  greater than 3. 
Therefore, the plastic zones obtained by the Mises criterion are not always 
geometrically self-similar for various values of the ratio u i l p  as considered 
in previous investigations. This can be explained because exact and asymp- 
totic solutions coincide only in a small neighborhood of the crack tip. As 
the plastic zone becomes greater for values of ufy/p tending to unity, the 
elastic- plastic boundary obtained by using the asymptotic solution is not 
reliable. 

To see the differences between the exact and the approximate formulas, 
the plastic zones predicted by the Mises criterion in plane-strain conditions 
are plotted in Figure 5 in the case of an epoxy plate with w = 0.43 and 
E = 1.82 GPa correspond to 100-40-8 phr, using first the exact formulas 

I"'= 
exact  

asymptotic 

x*/a 

Fig. 5. Mises' elastic-plastic boundaries in an infinite plate subjected to tractions p at 
infinity, using either the exact solution of the elastic problem or the asymptotic one, when 
u : / p  = 6.0 and u;/p = 2.0, respectively. 
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and second the Sneddon asymptotic one for u;lp=6.0 and u;Ip  = 2.0, 
respectively, where p is a uniform traction at infinity, contrary to previous 
results, which are obtained for p applied on the crack lips. From Figure 5 
it is shown that the plastic zones obtained from the asymptotic solution 
are, for the various values of u ; l p ,  self-similar whereas the shape of the 
plastic zones derived from the exact numerical solution presents significant 
distortions. Moreover, there is a great difference between the exact and the 
asymptotic plastic zones for u;Ip  = 2.0. Therefore, the use of asymptotic 
solution for u ; / p  tending to unity is unreliable. 

It is interesting to note that the above remarks are also valid for the case 
of plane-stress conditions.6 Another interesting remark is the similarity of 
the shape of the plastic zone in both cases (plane-strain conditions or plane- 
stress ones) when the crack is near the interface. This similarity does not 
exist when the crack is sent away from the boundary. 

CONCLUSIONS 

In this paper the plastic zones developed around the tip of a crack under 
opening-mode loading conditions in glassy polymers when the crack ap- 
proaches perpendicularly a bimaterial interface were studied. For the pre- 
diction of the plastic zones, two pressure-modified Mises yield criteria, MM1 
and MM2, respectively, and the exact solution of the problem were used. 
From the examples considered the following conclusions are derived: 

1. The crack-tip plastic zones derived from the MM1 and MM2 criteria 
are different and not always larger than those predicted by the Mises cri- 
terion. 

2. The plastic zones predicted by the second modified criterion are always 
larger than those of the first one. This difference increases as R increases. 

3. A distortion of the shape of plastic zones as the crack approaches the 
bimaterial interface is noted. 

4. The plastic zones predicted by the Mises criterion for small values of 
the ratio u j l p  present significant differences. As the ratio u j l p  increases 
the plastic zones become self-similar. 

5. Great differences in the shape of plastic zones using the exact formulas 
and the asymptotic ones for small values of the ratio ublp are also seen. 

6. The plastic zones, when the crack approaches the bimaterial interface, 
i.e., the stiffer material, becomes smaller and more elongated along the 
x-axis. This could have been predicted since the reinforcing material hind- 
ers the deformation of the other half-plane, and for the creation of plastic 
zones large deformation is needed. The fact that the plastic zone becomes 
smaller is an advantage for our analysis because the above plastic zone 
cannot be deformed essentially when a redistribution of stresses would be 
considered. So, it can be said that the shape of plastic zones when the crack 
is near the interface is similar to that given by the elastic-plastic solutions. 
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